
Kyle Lanclos
W. M. Keck Observatory

klanclos@keck.hawaii.edu

Image credit:Tomasz Sienicki tomasz.sienicki at gmail.com (via wikimedia)

Digital plumbing 
with Python/C

https://commons.wikimedia.org/wiki/User:Tsca


Why should we care about C?

Compatibility.

Complex components are far more likely to include a shared 
library than a Python module. This is especially true for older 
systems, or systems designed with portability in mind.



Why should we care about C?

Speed.

Your very best Python code will never be faster than the same 
algorithm implemented in C. You’re also free to use any 
available threading (multiprocessing) approach.



Why should we care about C?

Control.

When you call a C routine you know what you’re getting: 
exactly what you see and nothing more. This has particular 
value when interacting with complex vendor-supplied API’s. 
You can also carry around non-Python data with Python/C 
class instances.



What’s the downside of using C?

Complexity.

The Python/C API is very well done but your code will always 
be more verbose in C than it is in Python. You also have the 
added worry of maintaining a build environment to turn your 
Python/C code into a shared library.



What’s the downside of using C?

Decreased agility.

The goal is to limit yourself to using as little C as possible so 
that you can continue working in Python. Making sweeping 
changes in a body of C code is always more time-consuming 
than doing the same in Python.



Learning more about Python/C

Start (and end) with the official Python documentation. It’s 
really good, but finding the specific topic you’re looking for can 
be challenging. Google searches can fill in the gaps.

https://docs.python.org/2/c-api/intro.html

https://docs.python.org/3/c-api/intro.html

https://docs.python.org/2/c-api/intro.html
https://docs.python.org/3/c-api/intro.html


Image credit: Tomas Castelazo https://commons.wikimedia.org/wiki/User:Tomascastelazo

Actual 
usage



threading module

is_set()

wait([timeout])

clear()

set()

Fast threading.Event
primitive in Python/C
The threading.Event class is used as a 
signaling mechanism between threads. 
Basic usage typically involves one thread 
clearing an event instance and waiting for it 
to be set; some other thread sets the event 
when a condition has been reached; the 
original thread then proceeds executing. 
The stock Event class is implemented in 
pure Python and is regrettably slow. A 
re-implementation using pthread primitives 
is an order of magnitude faster.

class Event:



C structure definition
typedef struct Event {
  PyObject_HEAD
  bool flag;
  int blockers;
  pthread_cond_t primary_condition;
  pthread_cond_t signal_condition;
  pthread_mutex_t primary_mutex;
  pthread_mutex_t signal_mutex;
} Event;

class Event:



Actual code
static PyObject *
Event_isSet (Event *self, PyObject *args) {

  Py_BEGIN_ALLOW_THREADS
  pthread_mutex_lock (&self->primary_mutex);
  Py_END_ALLOW_THREADS

  current = self->flag;
  pthread_mutex_unlock (&self->primary_mutex);

  if (current == FALSE) {
result = Py_False;

  } else {
result = Py_True;

  }

  Py_INCREF (result);
  return result;
}

is_set()



Actual code
static PyObject *
Event_set (Event *self, PyObject *args) {

  Py_BEGIN_ALLOW_THREADS
  pthread_mutex_lock (&self->primary_mutex);
  Py_END_ALLOW_THREADS

  self->flag = TRUE;
  pthread_mutex_unlock (&self->primary_mutex);
  pthread_cond_broadcast (&self->primary_condition);

  Py_RETURN_NONE;
}

set()



Actual code I can make it fit, I know I can...

static PyObject *
Event_clear (Event *self, PyObject *args) {

  Py_BEGIN_ALLOW_THREADS
  pthread_mutex_lock (&self->primary_mutex);
  Py_END_ALLOW_THREADS
  if (self->flag == TRUE) {

pthread_mutex_unlock (&self->primary_mutex);
Py_BEGIN_ALLOW_THREADS
pthread_mutex_lock (&self->signal_mutex);
if (self->blockers > 0) {
  pthread_cond_wait (&self->signal_condition, &self->signal_mutex);
}
pthread_mutex_unlock (&self->signal_mutex);
pthread_mutex_lock   (&self->primary_mutex);
Py_END_ALLOW_THREADS

  }
  self->flag = FALSE;
  pthread_mutex_unlock (&self->primary_mutex);
  Py_RETURN_NONE;
}

clear()



Actual code OK, fine, it doesn’t all fit.

static PyObject *
Event_wait (Event *self, PyObject *args, PyObject *kwargs) {

  Py_BEGIN_ALLOW_THREADS
  pthread_mutex_lock (&self->primary_mutex);
  Py_END_ALLOW_THREADS

  current = self->flag;
  pthread_mutex_unlock (&self->primary_mutex);

  if (current == TRUE) {
Py_INCREF (Py_True);
return Py_True;

  }

  /* That was the simple case, which could be handled prior to dealing with
   * function arguments. Actual waiting involves timeout calculations,
   * acquiring mutexes, and waiting on pthread conditions. Return True if
   * signaled during the wait and False if a timeout occurred.
   */
}

wait([timeout])



KTL/C calls

ktl_open(s);

ktl_read(s, k);

ktl_write(s, k, value);

ktl_ioctl(s, k, ...);

ktl_close(s);

KTL Python
architecture overview
The KTL/C API presents a standard set of 
functions to interact with keyword/value 
pairs. A service is comprised of one or 
more (potentially thousands) of keywords; 
a service must be opened before it can 
receive queries; both services and 
keywords have metadata associated with 
them that reflect their capabilities and 
overall function. We want to handle high 
level complexity in pure Python while 
cleanly interfacing with the KTL/C API.



KTL/C calls

ktl_open(s);

ktl_read(s, k);

ktl_write(s, k, value);

ktl_ioctl(s, k, ...);

ktl_close(s);

KTL Python

class Service

init(service)

getitem(keyword)

del()

class Keyword

init(keyword)

read()

write(value)



KTL/C calls

ktl_open(s);

ktl_read(s, k);

ktl_write(s, k, value);

ktl_ioctl(s, k, ...);

ktl_close(s);

KTL Python

class Service

init(service)

getitem(keyword)

del()

class Keyword

init(keyword)

read()

write(value)



KTL/C calls

ktl_open(s);

ktl_read(s, k);

ktl_write(s, k, value);

ktl_ioctl(s, k, ...);

ktl_close(s);

KTL Python

class Service:

init(service)

getitem(keyword)

del()

class Keyword:

init(keyword)

read()

write(value)

KTL Python/C

class Service:

init(service)

getitem(keyword)

del()

class Keyword:

init(keyword)

read()

write(value)



KTL/C calls

ktl_dispatch(s);

KTL Python

class Service:

class Keyword:

update(new_value)

broadcast()

KTL Python/C

class Service:

class Dispatcher:

run()

dispatch()

callback(k, new_value)

subscribe()

class Keyword:

subscribe() ktl_read(s, k, w/sub);



Example code
static int
Service_init (Service *self, PyObject *args, PyObject *kwargs) {

/* Argument processing and boilerplate omitted for brevity’s sake. */

ktl_open (name, "keyword", 0, &self->handle);
ktl_ioctl (self->handle, KTL_CONNREG, alertNotifyHandler, self) < 0);
ktl_ioctl (self->handle, KTL_FDREG, alertNotifyHandler, self) < 0);
ktl_ioctl (self->handle, KTL_SUPERSUPP, &self->superpoly);
ktl_ioctl (self->handle, KTL_IMPLCAPS, &capabilities);
ktl_ioctl (self->handle, KTL_OBJECTS, &quantity, &keywords);

/* Lots and lots of error checking omitted for the same reason. */
}



Example code
static PyObject *
Keyword_read (Keyword *self, PyObject *args, PyObject *kwargs) {

/* Likewise missing all the boilerplate. */

ktl_context_create (self->service->handle, readNotifyHandler, self, NULL, &context);

if (self->service->notify == Py_True) {
ktl_read (self->service->handle,

                KTL_NOTIFY | self->service->superpoly,
                self->name, self, NULL, context);
} else {

ktl_read (self->service->handle,
                KTL_WAIT | self->service->superpoly,
                self->name, NULL, &anypoly, NULL);
}

}



Image credit: W. Carter https://commons.wikimedia.org/wiki/User:W.carter

The end



The basics

Image credit:Torsten Bätge https://commons.wikimedia.org/wiki/User:Torsten_B%C3%A4tge



All Python functionality is available in C

Everything you create is contained within a single module as 
seen from Python.

You can define functions, classes, and class methods.

You can initialize module contents (constants and the like).

You can call native Python code directly from your C code, but 
this isn’t an efficient use of the Python/C layer. Use sparingly.



Calling your code

import my_c_module

my_c_module.someFunction(thing1, thing2, foobar=’A keyword argument’)

class_instance = my_c_module.SomeClass(thing3, thing4, sauce=’teriyaki’)

class_instance.doThing()
class_instance.doTheOtherThing()

In short: it’s just Python code. You don’t do anything special to 
call Python/C functions, instantiate classes, etc. That’s good 
because that’s how a significant chunk of the Python standard 
library is implemented!



Backwards compatibility

There’s no serious obstacle to backwards compatibility going 
back to at least Python 2.5. You have to tweak the way you 
define things in your C header file, and you have to use a 
couple conditionals when you define your module in the C 
layer, but it’s not outrageous.

If your C code is just one part of a module (this is common) 
you have to choose between Python 2.4 and 3.x. The way you 
structure a Python module in 2.4 isn’t forwards-compatible.



Backwards compatibility (.h snippet)
#ifndef PyMODINIT_FUNC    /* boilerplate macro for DLL import/export */
  #define PyMODINIT_FUNC void
#endif

#ifndef T_BOOL            /* T_BOOL was established in Python 2.6. */
  #define T_BOOL T_INT
#endif

#if PY_VERSION_HEX < 0x02060000
  #ifndef lenfunc         /* PyMappingMethods field change in Python 2.6. */

#define lenfunc inquiry
  #endif

  #ifndef PyVarObject_HEAD_INIT /* New way to define classes in Python 2.6. */
#define PyVarObject_HEAD_INIT(type, size) \

           PyObject_HEAD_INIT(type) size,
  #endif

  #ifndef Py_TYPE         /* Forward-compatible way to access ob_type. */
#define Py_TYPE(ob) (((PyObject*)(ob))->ob_type)

  #endif
#endif

/* Portable workaround for: https://bugs.python.org/issue15657 */
#define COMBO_ARGS METH_VARARGS | METH_KEYWORDS



Forwards compatibility (.h snippet)
#if PY_MAJOR_VERSION >= 3
  #define PyInt_AsLong PyLong_AsLong
  #define PyInt_Check PyLong_Check
  #define PyInt_FromLong PyLong_FromLong

  #define PyNumber_Int PyNumber_Long

  #define PyString_FromString PyUnicode_FromString
  #define PyString_AsString PyUnicode_AsUTF8

  #ifndef Py_TPFLAGS_HAVE_SEQUENCE_IN
#define Py_TPFLAGS_HAVE_SEQUENCE_IN 0

  #endif
#endif

#if PY_VERSION_HEX < 0x03020000
  #define SLICE PySliceObject
#else
  #define SLICE PyObject
#endif



Example class definition
typedef struct Service {
  PyObject_HEAD
  char *name;
  KTL_HANDLE *handle;
  PyObject *keywords;
  PyObject *callback;
  PyObject *registered;
  int notify;
  int check;
  int check_fd;
  int prompt_fd;
} Service;

A PyObject * can refer to any Python object: numbers, strings, 
sequence types, or custom classes. Anything. The remaining 
structure members are all native C constructs.



Example class definition

typedef struct Keyword {
  PyObject_HEAD
  Service *service;
  char *name;
  KTL_DATATYPE type;
  PyObject *callback;
} Keyword;

Note that we have a stored reference to a Service instance, 
defined in the previous slide. We could use a PyObject * 
reference; using the native type means we can access its 
structure members directly.



Example module method
static PyObject *
ktlc_dumpster (PyObject *self, PyObject *args, PyObject *kwargs) {

  static char *kwlist[] = {"append", "close", NULL};
  PyObject *append=NULL;
  PyObject *close=NULL;

  if (!PyArg_ParseTupleAndKeywords (args, kwargs, "OO|", kwlist,
                                &append, &close)) {

PyErr_SetString (PyExc_TypeError, "arguments are a function and a close boolean");
return NULL;

  }
/* ...and so on. */

Note that we have a stored reference to a Service instance, 
defined in the previous slide. We could use a PyObject * 
reference; using the native type means we can access its 
structure members directly.



Example class method

static PyObject *
Keyword_convert (Keyword *self, PyObject *args, PyObject *kwargs) {

/* Keyword.convert() function goes here */
}

Note that the self argument is of the native type for the class, 
not a PyObject *. This allows you to directly access members 
of the struct without any extra type-checking.



Image credit: US Navy (public domain)

Gotchas



Reference counting

All Python objects have a reference count. When that count 
drops to zero the object is no longer valid. If you store a 
PyObject * reference anywhere in your Python/C code you 
have to know whether that reference is new or borrowed. If 
it’s a borrowed reference you need to manually increment and 
later decrement the reference count for that object. 
References can be stolen by functions you call. Check the 
documentation!



Reference counting
void
printException (void) {
  PyObject *result = NULL;

  result = PyErr_Occurred ();

  if (result != NULL) {
/* Print and clear the exception. */
PyErr_Print ();

  }

  /* No need to invoke Py_DECREF() on 'result', PyErr_Occurred() returns
 a borrowed reference. */
}

This code includes a comment noting that PyErr_Occurred() 
returns a borrowed reference. How do we know that? From 
the Python/C documentation.



Reference counting
message = PyTuple_New (3);

timestamp = PyFloat_FromDouble (current->timestamp);
severity = PyInt_FromLong ((long) current->severity);
text = PyString_FromString (current->message);

PyTuple_SET_ITEM (message, 0, timestamp);
PyTuple_SET_ITEM (message, 1, severity);
PyTuple_SET_ITEM (message, 2, text);

/* Do not invoke Py_DECREF() on the new set elements because PyTuple_SET_ITEM()
 * steals the new reference returned by PyString_FromString() (et al.).
 */

This code includes a comment noting that another Python 
function will steal a reference. How do we know that? From 
the Python/C documentation.



Reference counting

if (self->keywords != NULL) {
    PyDict_Clear (self->keywords);
    Py_DECREF (self->keywords);
    self->keywords = NULL;
}

This is part of a destructor, called when an instance gets 
deallocated. It takes care to properly delete a PyObject * 
reference, which in this case is a Python dictionary. Note that 
we don’t call free(), we just decrement the reference count.



Multithreading issues

Python is single-threaded by default. This is enforced through 
the Global Interpreter Lock (GIL). If you need to 
asynchronously call native Python code from your C code you 
must explicitly acquire the GIL and release it when you’re 
done. This should only be a concern if you have external C 
threads that trigger events.



Multithreading issues

If you know you’re going to block for some reason (waiting on 
network I/O, etc.) you should explicitly release the GIL so that 
other Python threads can proceed. The Python/C API includes 
two macros to simplify the process:

Py_BEGIN_ALLOW_THREADS
/* Do a blocking thing…*/
Py_END_ALLOW_THREADS



Multithreading issues

Signaling a Python thread is best handled with file descriptors. 
Open a socket pair and let your Python code invoke select() 
on the outbound descriptor; when your C code receives an 
asynchronous event that requires attention, stuff something in 
the inbound descriptor. This avoids the need to acquire the 
GIL and invoke a Python-native notification function.


