
A Decade of LSST Middleware
Jim Bosch, LSST Data Release Science Lead

Maunakea Python 2017

Outline
History:
● Designs we tried
● Mistakes we made
● Lessons we learned
● Some things that worked pretty well

Future:
● What we still don't have
● How we think we'll get it

pex.harness, pex.policy, and pex.logging

Early R&D: 2008-2011

Maunakea Python 2017

pex.harness

Pipeline code is split up into Stages:

● A Stage's process method takes a single dictionary, called a
Clipboard, that provides all inputs and is passed all outputs.

● The keys used for Clipboard lookup are provided as part of the
Stage's configuration file.

Stages are combined into pipelines by configuration files.

Stages represent small steps (e.g. source detection, PSF estimation).

Maunakea Python 2017

What pex.harness got right

● Stages can be reordered, swapped in and out, etc. with
declarative configuration.

● I/O totally abstracted away from algorithmic code.

● Large-scale execution totally up to control code.

Focused on the things pipeline operators care about.

Maunakea Python 2017

● Lots of boilerplate around algorithmic steps.

● Declarative step was too low:
○ a set of ordered Stages is itself an algorithm
○ combining them at the configuration level obscures the logic
○ the reordering/swapping flexibility was mostly a lie

● Abstractions for control code are only as good as their
implementations. And our implementations were poor.

● Configuration and code defined far away from each other.

What pex.harness got wrong

Maunakea Python 2017

The end of pex.harness

Frustrated with trying to build a usable pipeline for Hyper
Suprime-Cam using pex.harness, the HSC team (a significant fraction
of the LSST team at this time) just combined the low-level
algorithmic code by writing higher-level Python code that called it
directly. The resulting "mini-pipeline" was called Pipette.

The main LSST stack never used Pipette directly (I think), but the
next generation of LSST middleware would use it as a template.

Maunakea Python 2017

pex.logging and pex.policy

More or less typical logging and text-file configuration libraries.

But we wrote them ourselves:
● our own file formats and parsers
● our own logger destinations and formatters

And then they became zombies:
● the original developers left the project
● we decided we'd be better off using third-party tools
● no one "owned" the work involved in replacing them

pex.config, pipe.base, and Butler

Transition to Construction: 2011-2015

Maunakea Python 2017

pex.config

Define, document, and validate configuration options by creating
Python classes.

Write configuration as Python files:

● No need to write a parser of our own.

● Unlimited flexibility in setting options programmatically.

● Use import in configuration files to load external plug-ins.

Maunakea Python 2017

Defining Configuration Options
from lsst.pex.config import Config, Field, ConfigurableField

class DetectionConfig(Config):
 threshold = Field(
 dtype=float, default=5.0,
 doc="point-source S/N threshold"
)
 background = ConfigurableField(
 dtype=BackgroundConfig,
 doc="options for backround subtraction during detection"
)

Maunakea Python 2017

Defining Configuration Options

A ConfigurableField is special Field subclass that holds another
Config instance, usually for some lower-level algorithm it delegates
to.

Configs for high-level algorithms thus naturally form a tree of
configuration options.

Maunakea Python 2017

Setting Configuration Options
We can set the configuration options for detection by exec'ing a file
like the one below:

 config.threshold = 4.5
 config.background.binSize = 256

with the special variable config initialized to an instance of
DetectionConfig.

Maunakea Python 2017

How pex.config works

1. Field is a data descriptor (like the property built-in)

2. Config has a custom metaclass.

3. ...ugly, complex metaprogramming…
4. Profit!

Great for users, woe to the maintainers.

Maunakea Python 2017

pipe.base and Tasks

Tasks are:

● Callable - but with arbitrary signatures.

● Configurable - each Task class has an associated Config, and an
instance of that Config is always passed to the Task constructor.

● Nestable - a Task can have a subtask: an attribute that is another
Task.

The nested Config hierarchy parallels the Task hierarchy.

Maunakea Python 2017

pipe.base and Tasks

Tasks are:

● Callable - but with arbitrary signatures.

● Configurable - each Task class has an associated Config, and an
instance of that Config is always passed to the Task constructor.

● Nestable - a Task can have a subtask, an attribute that is another
Task.

The nested Config hierarchy parallels the Task hierarchy.

Maunakea Python 2017

Task Example
from lsst.pipe.base import Task

class DetectionTask(Task):
 ConfigClass = DetectionConfig

 def __init__(self, config, **kwds):
 self.makeSubtask("background")
 ...

 def run(self, exposure):
 self.background.run(exposure)
 ...

Maunakea Python 2017

Retargeting

A ConfigurableField for a subtask can be retargeted to point to a
Config instance for a different subtask:

 config.background.retarget(SplineBackgroundTask)

This lets us swap out algorithm Tasks via configuration, but only if
they have the same signatures - no false flexibility.

Maunakea Python 2017

The Butler
Datasets (~files) are labeled by a dataset type name (e.g. "src") and
a dictionary data ID (e.g. {"visit": 310, "sensor": 32}).

Butler organizes these with a data repositories (~directories), and
handles all the low-level I/O:

butler = Butler("/path/to/data")
catalog = butler.get("src", visit=310, sensor=32)
butler.put(catalog, "src", visit=310, sensor=32)

Maunakea Python 2017

CmdLineTask

A CmdLineTask is a Task that uses a Butler for its inputs and outputs,
and hence lives at the top of a Config/Task tree.

It also provides a specialized command-line argument parser that
lets users provide configuration overrides and the data IDs to be
processed.

CmdLineTasks can also be run with simple data-parallel
multiprocessing.

Maunakea Python 2017

Butler and CmdLineTask
A Data Repository (typically just the root one) also contains a SQLite
database file that relates observational metadata (date, filter, etc.)
to the data IDs.

This lets us include that metadata in our data ID expressions:

processCcd.py /path/to/data --id visit=350..400 ccd=0..103

or

processCcd.py /path/to/data --id filter=HSC-I field=COSMOS

Maunakea Python 2017

Running CmdLineTasks

The pipe.base framework isn't great for pipeline operators:

● We can't change parallelization axes within a CmdLineTask
(limiting how much you can put in a single CmdLineTask).

● There's no good way to run multiple dependent CmdLineTasks in
series

● There's no good way to run even a single CmdLineTask in parallel
beyond a single node.

LSST and HSC developed two distinct bad ways to do these things

Maunakea Python 2017

Evaluating Tasks, Configs, and Butler

● Task and Config have been a huge success - but maybe too
successful.

○ We've abused Config trees to store non-configuration data.

○ Subtask retargeting is a hammer that can make a lot of
problems look like nails.

● Butler and CmdLineTask succeeded at what they were designed
for - but we quickly found ourselves wanting more from them.

New Butler, Log, and Nocturnal Elves

Growing Pains: 2014-2017

Maunakea Python 2017

Replacing pex.logging

We needed:

● better scalability in the backend

● multithreading

● more powerful configuration system

● to not maintain of this ourselves

So we built a new logging package, delegating almost everything to
log4cxx.

Maunakea Python 2017

The New Butler Saga

Everyone came up with their own wish list for Butler features:

● relate data IDs ("what sky patches overlap this observation?")

● dynamic definition of dataset types

● subset and transfer data repositories

● composite datasets (override an image's WCS, or load the WCS
without loading the image)

● record/query provenance

Maunakea Python 2017

The New Butler Saga

Everyone imagined a New Butler that would do all of these things.

Everyone agreed it would be a good idea.

Everyone assumed it would also do anything else they thought of
(even if they didn't tell anyone about those ideas).

But only the nocturnal elves were actually working on New Butler.

Maunakea Python 2017

The New Butler Saga

While waiting for the nocturnal elves responsible for New Butler, we
started hacking the features we wanted into the existing code:

● we added special-case code for the instruments whose data we
processed most

● we relied heavily on undocumented private interfaces

● we put workarounds in the algorithm code

● we added lots of features to Butler itself without understanding
how they fit in architecturally

Maunakea Python 2017

The New Butler Saga

Finally, we replaced the elves with an actual developer, and tried to
evolve the current Butler incrementally into New Butler.

This turned out to be impossible:

● hard to remove dependence on old implementation

● lots of functionality never captured in tests

● backwards-compatibility in on-disk data repositories was a
constant problem

Generation 3 Butler and SuperTask

The Future: 2017-

Maunakea Python 2017

Where We Are Now

● Logging and Config: in good shape

● Task: good, but for low-level code only

● CmdLineTask:
○ can't combine into full pipelines
○ can't run even small pipelines at scale.

● Butler:
○ great concept
○ doesn't do everything we need
○ implementation has become unmanageable

Maunakea Python 2017

New Designs

A pair of cross-team "Working Groups" have come up with new
designs to solve these problems:

● SuperTask: a replacement for CmdLineTask and a framework for
running then.

● the Generation 3 Butler: a reimplementation of the Butler with a
totally different architecture and lots of new functionality.

Maunakea Python 2017

Dataset: a discrete data structure that has been stored. Usually
(but not always) a single file.

Collection: a group of related Datasets. Used to label the inputs
and outputs of processing runs. A Dataset can be associated with
multiple Collections.

DataUnit: a unit of data that can be used to label a Dataset, such
as "Visit 780" or "Sensor 10". Includes metadata.

Butler Concepts

Maunakea Python 2017

Butler Components

Registry: ~ Database Client

Connects Dataset metadata and
relationships to URIs.

Records provenance.

Defines Collections.

Datastore: ~ Filesystem Client

Reads, writes, stores, and transfers
Datasets.

Creates URIs.

Finds Datasets from URIs.

Manages file formats.

Butler: Convenience Layer

Holds and delegates to a
Registry and Datastore.

Operates on a single Collection.

Maunakea Python 2017

Registry
● A Python client to a SQL database that stores metadata,

relationships, and URIs for Datasets.

● Exposes a SQL schema common to all Registries.
○ Might be implemented with views.
○ Provides a direct SQL interface for SELECT queries.
○ All inserts/updates go through (virtual) Python methods.

● Also holds provenance information.

● Can hold multiple Collections.

● Abstract: several implementations expected.

Maunakea Python 2017

Visit

label

filter

camera

region

Sensor

label

camera

Visit × Sensor

visit

sensor

region

Tract

label

skymap

region

Patch

label

skymap

Tract × Patch

tract

patch

region

Filter

label

camera

Visit × Tract

Visit × Tract × Patch

Visit × Sensor × Tract Visit × Sensor × Tract × Patch

Registry Schema: DataUnit Joins

Maunakea Python 2017

Visit

label

filter

camera

region

Sensor

label

camera

Filter

label

camera

PVI

visit

sensor

tract

DeepCoadd

filter

tract

patch

Tract

label

skymap

region

Patch

label

skymap

Registry Schema: Datasets

Maunakea Python 2017

Datastore
● A Python object that can can read and write Datasets to/from

URIs.

● May involve communication with a remote server (and any file
transfer that involves).

● Responsible for all file format and file name (if applicable)
configuration.

● Does not know about Collections or DataUnits.

● Abstract: several implementations expected.

From user

From Butler

Butler.get

RC_w_2017_42
Collection

Visit 780
DataUnit

Sensor 30
DataUnit

Registry

PVI
Dataset Type

dbb://RC_w_2017_42/pvi-000780-030.fits
Dataset URI

Datastore

Python Object

Butler.put

RC_w_2017_42
Collection

Visit 780
DataUnit

Sensor 30
DataUnit

Registry

PVI
Dataset Type

From user

From Butler

RC_w_2017_42/pvi-000780-030.fits
Path (URI hint)

Datastore

Python Object
dbb://RC_w_2017_42/pvi-000780-030.fits

Dataset URI

Butler.put

RC_w_2017_42
Collection

Visit 780
DataUnit

Sensor 30
DataUnit

Registry

PVI
Dataset Type

From user

From Butler

RC_w_2017_42/pvi-000780-030.fits
Path (URI hint)

Datastore

Python Object
s3://a3f513612d312d13206972.fits

Dataset URI

Maunakea Python 2017

SuperTask Concepts

Quantum: a discrete unit of work, containing a list of input Datasets
and a list of output Datasets. The same object represents work to
be done, and work already done (provenance).

SuperTask: a Task that processes Quanta independently, using a
Butler for input and output, and knows how to define its own
Quanta.

Pipeline: a sequence of SuperTasks classes and their Configs.

Maunakea Python 2017

SuperTask Interface
class SuperTask:

 def defineQuanta(self, graph):
 """Define Quanta from the Datasets in the given QuantumGraph and
 add them to it.
 """
 ...

 def runQuantum(self, quantum, butler):
 """Run the SuperTask on the inputs and outputs defined by the given
 Quantum, retrieving inputs and writing outputs using a Butler.
 """
 ...

Maunakea Python 2017

Pipeline as a Graph

ProcessCcd

MakeWarps

AssembleCoadd

raw

PVI warp

JointCal

coadd

src WCS

flat

Maunakea Python 2017

QuantumGraph

quantum 1
Task=ProcessCcd

raw
visit=320

sensor=10

raw
visit=321

sensor=10

quantum 2
Task=ProcessCcd

src
visit=320

sensor=10

PVI
visit=320

sensor=10

quantum 3
Task=JointCal

src
visit=321

sensor=10

PVI
visit=321

sensor=10

WCS
visit=321

sensor=10

WCS
visit=320

sensor=10

quantum 4
Task=MakeWarps

quantum 5
Task=MakeWarps

quantum 6
Task=AssembleCoadd

warp
visit=320
tract=12
patch=50

warp
visit=321
tract=12
patch=50

coadd
tract=12
patch=50

filter=r

flat
begin=2019-04-10

sensor=10
filter=r

Maunakea Python 2017

Pre-Flight

Pipeline

SuperTask Config

SuperTask Config

SuperTask Config

SuperTask Config

Registry

DataUnits

Datasets

User Data ID
Expression

GraphBuilder

QuantumGraph

Datasets

Quanta

Quantum Execution

Workflow System

Execution Harness

DataUnits

QuantumGraph

Datasets

Quanta

DataUnits

Maunakea Python 2017

Status

High-level designs for the SuperTask Framework and the Gen. 3
Butler are mostly complete.

Minimal implementations are tentatively expected to be complete
around the middle of 2018.

We'll be processing data from the auxiliary telescope in late 2018!

Lessons Learned

Maunakea Python 2017

Closing the Loop

Stages and SuperTasks have some big similarities:

● they have generic signatures (clipboard vs. butler+quantum)
● they are combined into pipelines via declarative configuration
● they can be introspected to build an executable DAG

Did we just end up back where we started?

Maunakea Python 2017

Closing the Loop

The boundary has moved: SuperTasks are larger than Stages.

● We can do this because the tree of non-super Tasks carries
configurability, reusability, and production hooks (e.g. logging)
down to "regular" code.

SuperTasks put everything in one place.

● Configs are just Python; they live in the same modules as the
code they configure.

● SuperTasks define their Quanta as well as run them.

Maunakea Python 2017

Using Third-Party Code

We've moved away from doing everything ourselves.

● We use Python itself to parse configuration files.

● Custom front-ends with third-party backends for logging and
batch processing.

● We'll be leaning more on direct SQL queries for managing
dataset metadata.

Writing custom solutions has rarely been a problem for us - but
maintaining them has been.

Maunakea Python 2017

Using Third-Party Code

We never really gave any complete third-party frameworks a shot.

● If I was starting over today, I'd think hard about Spark/Hadoop.

○ Those weren't really options in 2008.

○ It's too late for LSST to switch to something that intrusive now.

● Everyone's data is different; don't expect anything to solve all of
your problems.

● It's really hard to guess the right technologies at the start of a
multi-decade project.

Maunakea Python 2017

Good code doesn't attract users; useful code does.

Users make it easier to make code a little better - they submit
patches, find bugs, etc.

Users make it harder to make code a lot better - backwards
compatibility makes architectural changes difficult.

Beware Success

Backup Slides

Maunakea Python 2017

Why not Python's built-in logging?

We would have needed a custom backend; this is just an interface
question. We explicitly considered and debated doing this.

In the end, we decided:

● it was more important to maximize similarities between logging
interfaces in C++ and Python (which are still not identical);

● using our own interface made logger configuration in hybrid
C++/Python code easier.

Maunakea Python 2017

The Butler
Data repositories can be chained (originally via symlink), defining a
multi-repository search path:

/path/to/data
/path/to/data/raw/<...>

/path/to/data/rerun/dr12/_parent -> ../..
/path/to/data/rerun/dr12/src/<...>

A butler pointed at /path/to/data/rerun/dr12/ will search both
repositories.

Maunakea Python 2017

More on Tasks

● Regular Tasks don't do I/O; only CmdLineTasks do.

● Configuration for a Task is considered frozen after it's
constructed.

● Tasks are constructed with loggers and metadata objects that
"know" their location in the hierarchy.

Maunakea Python 2017

Nifty pex.config features

There can be many layers of configuration overrides applied to a
pipeline.

So when a configuration option is assigned to, we record the file and
line number where it happened in the tree of Config objects.

Later, when a configuration option isn't set to the value we expect,
we can easily find out why.

Maunakea Python 2017

HSC wrote a MPI-based system (now ctrl.pool), using a higher level
of BatchPoolTasks that call multiple CmdLineTasks.

● Hard-codes changes in parallelization between CmdLineTasks.

● Creates submission scripts for PBS/Torque and Slurm.

● Assumes (and sometimes thrashes) a big shared filesystem.

● Makes running the current pipeline 4 steps, instead of ~10.

● Still have to also split up "wide" jobs into multiple submissions:
no automatic retries, load-balancing, etc.

Running CmdLineTasks

Maunakea Python 2017

Running CmdLineTasks

LSST wrote a HTCondor system (ctrl.execute) for running single
CmdLineTasks.

● No support at all for connecting different steps.

● Has specialized configuration packages for different compute
environments.

● Has better support for working on scratch space.

● Probably for running extremely "wide" jobs.

