
‘Let them evolve!’
Auto scheduling using

Python and Biology

Michael Pohlen

MkPy Workshop
8.-9. November 2017

What is scheduling?

➲ Distribution of requested/desired observation over night

Example: Gemini observatory

Why is it an issue?

➲ Classical observer

● Small amount of observations
● Knows priority
● Flexible, i.e. can react to weather, SN, …

==> rel. simply done by hand especially using QPT, or skycalc

➲ Queue observatory

● Lots of observations
● Many constraints (conditions, science bands, partner shares,..)

==> tough task often done by dedicated FTE

➲ Robotic telescopes

● Small number of staff
● React to change in conditions/importance automatically

==> Unavoidable and very important

What did I look into?

➲ Looking for student project at UHH summer course (Soft-
ware Systems for Astronomy)

➲ Al Conrad (UH) suggest to look into automatic scheduling:
Python’s object orientated setup + a genetic algorithm

➲ Based on idea presented by Petr Kubánek in
“Genetic Algorithm for Robotic Telescope Scheduling”
2009 Master Thesis (University Granada, Spain)

➲ Then a planned extension to RTS2
(open source package for autonomous observatories)

Multi Objective Optimisation

➲ Using evolutionary/genetic algorithm: NSGA-II
(Non-dominated Sorting Genetic Algorithm II, Deb et al. 2002)

● 1) Initial random population of schedules
● 2) Rank schedules (Non-dominated sort, Pareto front)
● 3) Evolve population:

● Crossover: best parents mate and have two children
(tournament selection)

● child 1 gets most of observation from p1, rest from p2
● child 2 gets most of observation from p2, rest from p1

● Mutation: random observation replaced

● 4) Add children to population, rank, and cut back to original size

● 5) Start over at number 3)

Python Objects/Definitions

evolution
- evolve

- createInitial

evolution
- evolve

- createInitial

population
(of schedules)
- addSched()

- extend()
- plotFit()

population
(of schedules)
- addSched()

- extend()
- plotFit()

obsPool
- all observation

obsPool
- all observation

schedule
(list per night)

- addObs()
- mergeSched()

- pushLeft()
- swap()
- fillObs()

- getIdList()
-getAmRange()
- plotSched()

- getFit()

schedule
(list per night)

- addObs()
- mergeSched()

- pushLeft()
- swap()
- fillObs()

- getIdList()
-getAmRange()
- plotSched()

- getFit()

target
- ra
-dec

- tobs
- maxAlt

- getMidHa()

target
- ra
-dec

- tobs
- maxAlt

- getMidHa()

site
- name

- lat
- lon

-elevation

site
- name

- lat
- lon

-elevation

calcAmcalcAm

calcTranscalcTrans

twilighttwilight

convLt2UtconvLt2Ut

convUt2LtconvUt2Lt

getRandomRaDecgetRandomRaDec

setObserversetObserver

NSGA-II
- tournament()

- createChildren()
- calcRank()

-calcCrowdingDist()

NSGA-II
- tournament()

- createChildren()
- calcRank()

-calcCrowdingDist()

......

Algorithm details

➲ Objectives (minimising)
● Science rank/band (e.g. @Gemini: 1-4)

== band * Texp
● Airmass (the lower the better)

== midHA*(maxAlt-30)

Algorithm details

➲ Objectives (minimising)
● Science rank/band (e.g. @Gemini: 1-4)

== band * Texp
● Airmass (the lower the better)

== midHA*(maxAlt-30)

➲ Multi-objetive optimization
● No single solution
● Pareto optimal solutions

(Pareto front)

Airmass

Science
band

D

E

Algorithm details

➲ Objectives (minimising)
● Science rank/band (e.g. @Gemini: 1-4)

== band * Texp
● Airmass (the lower the better)

== midHA*(maxAlt-30)

➲ Multi-objetive optimization
● No single solution
● Pareto optimal solutions

(Pareto front)

➲ Pareto based ranking
● No weights needed
● No combined fit needed

Airmass

Science
band

Rank 1

Rank 2

Rank 3

Rank 2

Rank 4

Algorithm details

➲ Objectives (minimising)
● Science rank/band (e.g. @Gemini: 1-4)

== band * Texp
● Airmass (the lower the better)

== midHA*(maxAlt-30)

➲ Multi-objetive optimization
● No single solution
● Pareto optimal solutions

(Pareto front)

➲ Pareto based ranking
● No weights needed
● No combined fit needed

➲ Crowding distance
● crowding distance to preserve ‘diversity’

Airmass

Science
band

Rank 1

Rank 2

Rank 3

Rank 2

Rank 4

➲ Objectives (minimising)
● Science rank/band (e.g. @Gemini: 1-4)

== band * Texp
● Airmass (the lower the better)

== midHA*(maxAlt-30)

➲ Multi-objetive optimization
● No single solution
● Pareto optimal solutions

(Pareto front)

➲ Pareto based ranking
● No weights needed
● No combined fit needed

➲ Crowding distance
● crowding distance to preserve ‘diversity’

Algorithm details

Science
band

Rank 2

Rank 3

Rank 2

Rank 4

step t

step t+1

parents

children

new
parents

Scheduling specifies

➲ Merit defined as sum over nights

➲ Where to cut schedules?
● By numObs, crossoverpoint 75%

➲ Crossover will leave gaps
● Observation from other parent will not match gap 1-1
● Some observations might be already schedules on other nights

➲ Repair schedule:
● Shift new observations left
● Fill gaps with random (free) observation from obsPool

➲ Swap observations:
● Often a simple swap is beneficial

Example run

➲ 100 populations with 160 schedules each for 4 nights

Example run

➲ 100 populations with 160 schedules each for 4 nights

Example run

➲ 100 populations with 160 schedules each for 4 nights

Example run

➲ 100 populations with 160 schedules each for 4 nights

Example run

➲ 100 populations with 160 schedules each for 4 nights

Example run

➲ 100 populations with 160 schedules each for 4 nights

Example run

➲ 100 populations with 160 schedules each for 4 nights

Example run

➲ 100 populations with 160 schedules each for 4 nights

Example run

➲ 100 populations with 160 schedules each for 4 nights

Example run

➲ 100 populations with 160 schedules each for 4 nights

Example run

➲ 100 populations with 160 schedules each for 4 nights

Example run

➲ 100 populations with 160 schedules each for 4 nights

Example run

➲ 100 populations with 160 schedules each for 4 nights

Example run

➲ 100 populations with 160 schedules each for 4 nights

Example run

➲ 100 populations with 160 schedules each for 4 nights

Example run

➲ 100 populations with 160 schedules each for 4 nights

Schedules

➲ Initial random schedules

Bad

OK-ish

Schedules

➲ Final schedules

Next steps

➲ Implement mutations

➲ Prevent final schedules to be same as existing

➲ Find out how to save execution time

➲ Try some large scale tests (1 week/1month/0.5 year)

➲ Add more objectives (e.g. slew time, penalty for leaving
high ranked observations out)

➲ Add constraints (BG, airmass, timing window, instrument)

➲ Make random obsPool more realistic (not fixed timeblocks)

➲ Add possibility to split long blocks

➲ Find real life example (transition from ‘fun’ to ‘useful’)

Credits

➲ Gemini Observatory for allowing me to take SSFA course

➲ Al Conrad (UHH) for pointing out this topic

➲ Petr Kubánek for demonstarting the feasibility

➲ Andrew Stephens (Gemini) for his twilight calculation

➲ Google/Wikipedia for info on Python/genetic algorithms

➲ GitHub: wreszelewski/ngsa2 (Python NGSA-II implementation)

➲ GitHub: matthewjwoodruff/pareto.py (Nondominated sorting)

➲ ….

	Title
	Overview
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

