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What is scheduling?

➲ Distribution of requested/desired observation over night

 

Example: Gemini observatory



Why is it an issue?

➲ Classical observer 

● Small amount of observations
● Knows priority 
● Flexible, i.e. can react to weather, SN, …

==> rel. simply done by hand especially using QPT, or skycalc  

➲ Queue observatory

● Lots of observations
● Many constraints (conditions, science bands, partner shares,..)

==> tough task often done by dedicated FTE

➲ Robotic telescopes

● Small number of staff
● React to change in conditions/importance automatically

==> Unavoidable and very important
 



What did I look into?

➲ Looking for student project at UHH summer course (Soft-
ware Systems for Astronomy) 

➲ Al Conrad (UH) suggest to look into automatic scheduling: 
Python’s object orientated setup + a genetic algorithm 

➲ Based on idea presented by Petr Kubánek in
“Genetic Algorithm for Robotic Telescope Scheduling”
2009 Master Thesis (University Granada, Spain) 

➲ Then a planned extension to RTS2 
(open source package for autonomous observatories)

 



Multi Objective Optimisation

➲ Using evolutionary/genetic algorithm: NSGA-II 
(Non-dominated Sorting Genetic Algorithm II, Deb et al. 2002)
 
● 1) Initial random population of schedules
● 2) Rank schedules (Non-dominated sort, Pareto front)
● 3) Evolve population:

● Crossover: best parents mate and have two children
(tournament selection) 

● child 1 gets most of observation from p1, rest from p2
● child 2 gets most of observation from p2, rest from p1

● Mutation: random observation replaced 

● 4) Add children to population, rank, and cut back to original size 

● 5) Start over at number 3) 



Python Objects/Definitions

 

evolution
- evolve

- createInitial

evolution
- evolve

- createInitial

population
(of schedules)
- addSched()

- extend()
- plotFit()

population
(of schedules)
- addSched()

- extend()
- plotFit()

obsPool
- all observation

obsPool
- all observation

schedule
(list per night)

- addObs()
- mergeSched()

- pushLeft()
- swap()
- fillObs()

- getIdList()
-getAmRange()
- plotSched()

- getFit()

schedule
(list per night)

- addObs()
- mergeSched()

- pushLeft()
- swap()
- fillObs()

- getIdList()
-getAmRange()
- plotSched()

- getFit()

target
- ra
-dec

- tobs
- maxAlt

- getMidHa()

target
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-dec

- tobs
- maxAlt

- getMidHa()

site
- name

- lat 
- lon

-elevation

site
- name

- lat 
- lon
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calcAmcalcAm

calcTranscalcTrans

twilighttwilight

convLt2UtconvLt2Ut

convUt2LtconvUt2Lt

getRandomRaDecgetRandomRaDec

setObserversetObserver

NSGA-II
- tournament()

- createChildren()
- calcRank()

-calcCrowdingDist()

NSGA-II
- tournament()

- createChildren()
- calcRank()

-calcCrowdingDist()

......



Algorithm details

➲ Objectives (minimising)
● Science rank/band (e.g. @Gemini: 1-4) 

== band * Texp    
● Airmass (the lower the better)

== midHA*(maxAlt-30)
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Scheduling specifies

➲ Merit defined as sum over nights

➲ Where to cut schedules? 
● By numObs, crossoverpoint 75% 

➲ Crossover will leave gaps
● Observation from other parent will not match gap 1-1
● Some observations might be already schedules on other nights  

➲  Repair schedule:
● Shift new observations left
● Fill gaps with random (free) observation from obsPool

➲ Swap observations: 
● Often a simple swap is beneficial 

 



Example run 

➲ 100 populations with 160 schedules each for 4 nights 
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Schedules

➲ Initial random schedules

 
Bad

OK-ish



Schedules

➲ Final schedules

 



Next steps

➲ Implement mutations

➲ Prevent final schedules to be same as existing

➲ Find out how to save execution time

➲ Try some large scale tests (1 week/1month/0.5 year) 

➲ Add more objectives (e.g. slew time, penalty for leaving 
high ranked observations out)

➲ Add constraints (BG, airmass, timing window, instrument)

➲ Make random obsPool more realistic (not fixed timeblocks)

➲ Add possibility to split long blocks

➲ Find real life example (transition from ‘fun’ to ‘useful’)  

 



Credits

➲ Gemini Observatory for allowing me to take SSFA course

➲ Al Conrad (UHH) for pointing out this topic

➲ Petr Kubánek for demonstarting the feasibility

➲ Andrew Stephens (Gemini) for his twilight calculation 

➲ Google/Wikipedia for info on Python/genetic algorithms

➲ GitHub: wreszelewski/ngsa2 (Python NGSA-II implementation)

➲ GitHub: matthewjwoodruff/pareto.py (Nondominated sorting)

➲ ….
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